Kirchhoff Index and Degree Kirchhoff Index of Tetrahedrane-Derived Compounds

نویسندگان

چکیده

Tetrahedrane-derived compounds consist of n crossed quadrilaterals and possess complex three-dimensional structures with high symmetry dense spatial arrangements. As a result, these hold great potential for applications in materials science, catalytic chemistry, other related fields. The Kirchhoff index graph G is defined as the sum resistive distances between any two vertices G. This article focuses on studying type tetrafunctional compound linear square chain shape. degree this are calculated, detailed analysis discussion conducted. calculation formula obtained based relationship Laplace eigenvalue, number spanning trees derived quadrangular chains. validated using Ohm’s law Cayley’s theorem. Asymptotically, ratio to Wiener approaches one-fourth. Additionally, expression through regular eigenvalue matrix decomposition

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

note on degree kirchhoff index of graphs

the degree kirchhoff index of a connected graph $g$ is defined as‎ ‎the sum of the terms $d_i,d_j,r_{ij}$ over all pairs of vertices‎, ‎where $d_i$ is the‎ ‎degree of the $i$-th vertex‎, ‎and $r_{ij}$ the resistance distance between the $i$-th and‎ ‎$j$-th vertex of $g$‎. ‎bounds for the degree kirchhoff index of the line and para-line‎ ‎graphs are determined‎. ‎the special case of regular grap...

متن کامل

Computing the additive degree-Kirchhoff index with the Laplacian matrix

For any simple connected undirected graph, it is well known that the Kirchhoff and multiplicative degree-Kirchhoff indices can be computed using the Laplacian matrix. We show that the same is true for the additive degree-Kirchhoff index and give a compact Matlab program that computes all three Kirchhoffian indices with the Laplacian matrix as the only input.

متن کامل

On hyper-Kirchhoff index

The hyper-Kirchhoff index is introduced when the hyper-Wiener operator is applied to the resistance-distance matrix of a connected graph. We give lower and upper bounds for the hyper-Kirchhoff index, and determine the n-vertex unicyclic graphs with the smallest, the second and the third smallest as well as the largest, the second and the third largest hyper-Kirchhoff indices for n ≥ 5. We also ...

متن کامل

Kirchhoff index of composite graphs

Let G 1 + G 2 , G 1 • G 2 and G 1 {G 2 } be the join, corona and cluster of graphs G 1 and G 2 , respectively. In this paper, Kirchhoff index formulae of these composite graphs are given.

متن کامل

Maximizing Kirchhoff index of unicyclic graphs with fixed maximum degree

The Kirchhoff index of a connected graph is the sum of resistance distances between all unordered pairs of vertices in the graph. Its considerable applications are found in a variety of fields. In this paper, we determine the maximum value of Kirchhoff index among the unicyclic graphs with fixed number of vertices and maximum degree, and characterize the corresponding extremal graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2023

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym15051122